Epoxy Slurry

Description
Westcoat Epoxy Slurry is a multi-component 100% solids epoxy floor coating, blended with slurry powder or graded silica, which provides a high build system that is tough, chemical resistant, low odor, and durable.

Uses
Epoxy Slurry is used to create seamless floors in manufacturing plants, mechanical rooms, warehouses, commercial kitchens, restaurants, garages, and service areas. Epoxy Slurry System is designed to be used as a medium duty coating.

Advantages
- Self-Leveling
- USDA Compliant
- 100% Solids
- Chemical Resistant
- High Strength
- Low Odor
- High Build

Packaging
EC-72 Epoxy Patch Gel (½ gallon or 2 gallon kits)
EC-74 Epoxy Patch Paste (½ gallon or 2 gallon kits)
EC-12 Epoxy Primer (1 ½ and 15 gallon kits)
EC-34 Epoxy Topcoat (Pigmented) (1 ½ and 15 gallon kits)
Slurry Filler 50 pound bags.

Optional Materials
EC-100 Polyurea Topcoat (1 ½ and 15 gallon kits)
EC-11 Water-Based Epoxy (1 ½ and 15 gallon kits)
EC-95 Polyurethane Topcoat (1 and 10 gallon kits)

Note: System components may vary depending on desired result. Please see Application section for options.

Caution: Approval and verification of proposed colors, textures, and slip resistance is recommended.

INSPECTION / PREPARATION

Inspection
Surface must be structurally sound. The surface must be dry and free of oil, grease, curing agents, dirt, dust or other foreign material that may prevent proper adhesion. The surface must be porous or rough enough to allow the product to soak in. The concrete should be at least 2500 psi and feel like 30 to 50 grit sandpaper. A minimum of 28 days cured is required on all concrete. Before starting flooring work, test existing concrete slab for efflorescence, moisture, and hydrostatic pressure.

Preparation
Pre-cut and clean all cracks and joints with a concrete diamond blade to at least ¼ x ¼ inch. Prepare concrete to a profile equal to 30 or 50, grit sandpaper. You may mechanically profile by grinding, shot blasting, scarifying, or water blasting. Methods may vary according to the thickness of the coating to be applied and the condition and hardness of the concrete. Other factors include the forecasted use of the surface and the environment in which it is to be installed. When preparing the surface use caution when shot blasting around pools, scarifying too aggressively, grinding marks or grinding too smooth.

Moisture
All concrete should be tested for moisture before applying a seamless coating. Water vapor transmission upwards through on-grade concrete slabs may result in loosening of epoxy floors or improper curing of epoxy materials. If moisture emissions exceed 4 lbs./1000 sq ft. contact the manufacturer before application.

APPLICATION

Crack Filler
Mix 1 part A with 1 part B (by volume) of EC-72 Epoxy Patch Gel or EC-74 Epoxy Patch Paste together for 3-4 minutes and apply to the crack using a trowel or putty knife. Patch all spalls and cracks with EC-72 or EC-74. The material may be slightly overfilled in the crack and sanded or ground smooth. If desired, use EC-72 or EC-74 to create a cove/radius at the wall to deck transition. Cove may be created using a cove tool. See complete EC-72 or EC-74 Product Specification Sheet.

Primer
Mix 2 parts A with 1 part B (by volume) EC-12 Epoxy Primer together for 3-4 minutes. For maximum penetration into the concrete, thin by adding 1-2 quarts of acetone to each ½ gallon kit. Thinned material must be applied at no more than 5 mils (and not allowed to puddle) to cure properly. Immediately apply at a rate of 250-300 (5-8 mils) square feet per gallon using a trowel or squeegee and then back roll to ensure complete coverage. Be sure to apply up cove to termination point. See complete EC-12 System Specification Sheet.
Slurry Coat
Mix a 1½ gallon batch of EC-12 (Pigmented) with approximately 1½ gallons of slurry filler (#60, #90 silica sand and silica flour) to create an epoxy slurry mix. Use a notched trowel, squeegee or back-rake to apply slurry mix at approximately 25 to 100 square feet per mix. Additional silica sand can be broadcasted into wet slurry coat if needed to help build up coating level, hide imperfections, or to create texture. When coating is dry, scrape, grind, or sand as necessary.

Seal Coat
Mix 2 parts A with 1 part B (by volume) of EC-34 (Pigmented) together for 3-4 minutes and apply at a rate of 150-200 square feet per gallon. Be sure to apply up to a cure to termination point when applicable.

Topcoat
Mix 2 parts A with 1 part B (by volume) of EC-34 (Pigmented) together for 3-4 minutes and apply at a rate of 250-300 square feet per gallon (8 to 16 mils) using a notched squeegee or trowel and back-roll using a high quality non-shedding ¼ inch nap roller. #20 or #30 silica sand can be lightly broadcasted into wet EC-34 and back-rolled in traffic areas, aisles, or as needed for slip resistance (See EC-34 Product Specification Sheet for more details).

Optional Materials
• Use EC-95 Polyurethane Topcoat or EC-100 Polyurea Topcoat over EC-24 for greater chemical and UV protection.
• Novolac may be used as a final topcoat for extreme chemical or heat conditions.

EC-95 Polyurethane Topcoat or EC-100 Polyurea Topcoat can be applied over the epoxy within 24 hours to improve chemical, abrasion and UV resistance as well as gloss. When surface gets direct UV exposure, only a pigmented Polyurethane or Polyurea will truly protect from the UV light. (See product Specification Sheets prior to use)

Recoating
Protect the finish work by prohibiting traffic on floor for 48 hours after installation. Avoid heavy abrasion and chemical exposure for 5 days.

Clean Up
Uncured material can be removed with solvent. If cured, material can only be removed mechanically or with an environmentally-safe solvent.

MAINTENANCE

Interior floors that are coated with epoxy, polyurethane, or polyurea should be cleaned with a mild non-filming detergent. Be sure to rinse well. You may use Westcoat Degreaser diluted with 10 parts of warm water. Scrub with light bristle brush and rinse with clean water.

You may wax interior floors with Westcoat Liquid Floor Wax to renew the gloss if desired. If wax is applied, occasional stripping of the wax may be required.

If recoating of the floor is required due to wear or abrasion, you will need to clean and degrease the surface, then lightly abrade and reapply the topcoat. In most cases you will need to clean the surface with a solvent such as acetone and thin the new topcoat as well. A primer may be required. We suggest you recoat every 5 years depending on use. Contact Westcoat or your applicator for details.

LIMITATIONS

• This system is designed for professional use only.
• Read individual Product Specification sheets for each Westcoat product you will be using before beginning the project.
• Be sure to do adequate surface preparation.
• Test for moisture in concrete and vapor drive.
• Be sure to measure and mix properly. Be aware of the pot life of mixed epoxy.
• Do not apply in temperatures below 50°F or above 95°F. Cooler temperatures will cause slower dry times. Westcoat products should never be allowed to FREEZE.
• Thinly applied coatings may not hide epoxy patches, rough concrete or shotblast tracks.
• Heavier topcoat may become slippery.
• Skid resistant additives are available.
• Heavier topcoat may become slippery.

HEALTH PRECAUTIONS

Inhalation of vapor or mist can cause headache, nausea, irritation of nose, throat, and lungs. Prolonged or repeated skin contact can cause slight skin irritation. All epoxies have the potential of causing skin irritations or allergic reactions.

Be careful not to get on skin, clothes or in eyes. Glove and respirators are strongly recommended. Avoid breathing vapors. If splashed in the eye, flush with warm water and contact a physician if blurring persists.
DISCLAIMER

PURCHASER'S SOLE AND EXCLUSIVE REMEDY AGAINST THE MANUFACTURER OF WESTCOAT, SHALL BE LIMITED SOLELY TO THE REPLACEMENT OF ANY DEFECTIVE MATERIAL OR A PAYMENT BY THE MANUFACTURER IN AN AMOUNT EQUAL TO THE COST OF THE ORIGINAL MATERIAL.

TECHNICAL DATA

<table>
<thead>
<tr>
<th>Test</th>
<th>EC-2 Epoxy Primer</th>
<th>EC-34 Epoxy Topcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Strength, psi ASTM D695</td>
<td>11,355</td>
<td>10,105</td>
</tr>
<tr>
<td>Compressive Modulus, psi</td>
<td>375,000</td>
<td>310,000</td>
</tr>
<tr>
<td>Tensile Strength, psi ASTM D638</td>
<td>7,550</td>
<td>6,850</td>
</tr>
<tr>
<td>Tensile Modulus, psi</td>
<td>189,000</td>
<td>204,000</td>
</tr>
<tr>
<td>Elongation, %</td>
<td>5.3</td>
<td>7</td>
</tr>
<tr>
<td>Hardness, Shore D ASTM D2240</td>
<td>83</td>
<td>84</td>
</tr>
<tr>
<td>Abrasion Resistance, wt loss, gms ASTM D4060 @ 1000 Cycles</td>
<td>0.036</td>
<td>0.056</td>
</tr>
<tr>
<td>Mar Resistance, KG ASTM D517B</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Pencil Hardness</td>
<td>3H</td>
<td>3H</td>
</tr>
<tr>
<td>Impact Resistance, inch-lbs Direct/Reverse ASTM D2194-84</td>
<td>15/2</td>
<td>20/2</td>
</tr>
<tr>
<td>Flexural Strength, psi ASTM D790</td>
<td>11,185</td>
<td>10,175</td>
</tr>
<tr>
<td>Flexural Modulus, psi</td>
<td>445,000</td>
<td>383,000</td>
</tr>
<tr>
<td>Cross Hatch Adhesion 0-Worst, 5-Best</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Glass Transition, °C</td>
<td>48</td>
<td>50</td>
</tr>
</tbody>
</table>