Description
Westcoat Epoxy Mortar is a 100% solids epoxy combined with graded sand and troweled into place. It provides a high-build system that is highly impact resistant, chemical resistant, and very durable.

Uses
Epoxy Mortar is used to create seamless floors in manufacturing plants, mechanical rooms, warehouses, commercial kitchens, restaurants, garages, and service areas where heavy use, such as forklift traffic will apply. Epoxy Mortar System is designed to be used as a heavy duty coating.

Advantages
• Impact Resistant
• USDA Compliant
• 100% Solids
• Chemical Resistant
• High Strength
• Choice of Colors and Finishes
• Low Odor
• Wear Resistant
• Superior Adhesion
• High Build

Packaging
EC-72 Epoxy Patch Gel (1/2 & 2 gallon kits)
EC-74 Epoxy Patch Paste (1/2 & 2 gallon kits)
EC-34 Epoxy Topcoat (Pigmented)
(1 gallon & 15 gallon kits)
EC-12 Epoxy Primer (1 gallon & 15 gallon kits)
B-23 Monterey Sand (100 lb bags)

Optional Materials
EC-31 Clear Epoxy Topcoat (15 gallon kits)
EC-95 Polyurethane Topcoat (10 gallon kits)
EC-100 Polyurea Topcoat (15 gallon kits)

Note: System components may vary, depending on desired result. Please see Application section for options.

Caution: Approval and verification of proposed colors, textures, and slip resistance is recommended.

INSPECTION / PREPARATION

Inspection
Surface must be structurally sound. The surface must be dry and free of oil, grease, curing agents, dirt, dust or other foreign material that may prevent proper adhesion. The surface must be porous or rough enough to allow the product to soak in. The concrete should be at least 2500 psi and feel like 30 to 50 grit sandpaper. A minimum of 28 days cured is required on all concrete. Before starting flooring work, test existing concrete slab for efflorescence, moisture, and hydrostatic pressure.

Preparation
Pre-cut and clean all cracks and joints with a concrete diamond blade to at least ¼ x ¼ inch. Prepare concrete to a profile equal to 30 or 50, grit sandpaper. You may mechanically profile by grinding, shot blasting, scarifying, or water blasting. Methods may vary according to the thickness of the coating to be applied, and the condition and hardness of the concrete. Other factors include the forecasted use of the surface and the environment in which it is to be installed. When preparing the surface use caution when shot blasting around pools, scarifying too aggressively, grinding marks or grinding too smooth.

Moisture
All concrete should be tested for moisture before applying a seamless coating. Water vapor transmission upwards through on-grade concrete slabs may result in loosening of epoxy floors or improper curing of epoxy materials. If moisture emissions exceed 4 lbs./1000 sq ft, contact the manufacturer before application.

APPLICATION

Crack Filler
Mix 1 part A with 1 part B (by volume) of EC-72 Epoxy Patch Gel or EC-74 Epoxy Patch Paste together for 3-4 minutes and apply to the crack using a trowel or putty knife. Use WC-47-3 Seam Tape for additional reinforcement. Patch all spalls and cracks with EC-720 or EC-74. The material may be slightly overfilled in the crack and sanded or ground smooth. If desired, use EC-72 or EC-74 to create cove/radius at the wall to deck transition. Cove may be created using cove tool. (Please read complete EC-72 or EC-74 Epoxy Patch Product Specification Sheet).
Cove Base
Install cove cap or cut a riglet at the desired height (usually 6 inches). Mix 1 part A with 1 part B (by volume) of EC-72 Epoxy Patch Gel or EC-74 Epoxy Patch Paste together for 3-4 minutes and spread as thin as possible onto the vertical surface. Immediately, using the same neat mix, combine with 5 parts B-23 Monterey Sand and trowel into place using an inside step tool and trowel to smooth. Lubricate the trowel using a solvent on a rag as needed to keep tools clean.

Primer
Mix 2 parts A with 1 part B (by volume) EC-12 Epoxy Primer together for 3-4 minutes. For best penetration into concrete, thin by adding 1-2 quarts of acetone to each 1½ gallon kit. Thinned material must be applied at least 5 mils (and not allowed to puddle) to cure properly. Immediately apply at a rate of 250-300 (5-8 mils) square feet per gallon using a trowel or squeegee and then back roll to ensure complete coverage. Be sure to apply up cove to termination point. Trowel material into wet primer or broadcast silica sand to aid in application of mortar mix. (Please read complete EC-12 Product Specification Sheet)

Mortar Base
Mix 1 gallon part A with ½ gallon part B of EC-34 Epoxy Topcoat (Pigmented) together for 3-4 minutes and combine with 100 pounds of B-23 Monterey Sand. Apply at a rate of 45 square feet per mix to equal approximately ½ inch, or 90 square feet to equal ½ inch. Trowel material into place and lubricate the trowel using a solvent on a rag as needed to keep tools clean.

Seal Coat
Sand, grind, and repair imperfections in the surface. Mix 1 gallon part A with ½ gallon part B (by volume) of EC-34 (Pigmented) together for 3-4 minutes and apply at a rate of 75 square feet per gallon. First brush to fill all of the vertical cove and then using a squeegee or trowel spread the material onto the floor and back roll to smooth and fill using a high quality non-shedding ½ inch nap roller. Coved areas may require additional coats to properly seal. (See EC-34 Product Specification Sheet for more details).

Optional Skid Resistance
You may either broadcast aggregate into the seal coat or into the topcoat and back roll. A small area should be done as a sample. Keep in mind the thickness of each coat, as well as the size of the aggregate used; usually 20-60 mesh, silica sand, aluminum oxide or silicon carbide. Color of aggregate and topcoat chosen should be considered. Additional topcoats may be required to effectively encapsulate and cover the aggregate.

Topcoat
For standard interior application, Mix 2 parts A and 1 part B for 3-4 minutes then apply a coat of EC-34 at approximately 300-400 square feet per gallon (4-5 mils).

Optional Materials
• Use EC-95 Polyurethane Topcoat or EC-100 Polyurea Topcoat over EC-34 for greater chemical & UV protection.
• EC-31 Epoxy Clear Topcoat, may be used in place of EC-34 for a more decorative look.
• Color Quartz in place of Monterey Sand and clear epoxy EC-34 trowel coat and EC-31 Clear Epoxy Topcoat may be used for trowel down quartz look.
• Novolac may be used as a final topcoat for extreme chemical or heat conditions.

EC-95 Polyurethane Topcoat or EC-100 Polyurea Topcoat can be applied over the epoxy within 24 hours to improve chemical, abrasion, and UV resistance as well as gloss. When surface gets direct UV exposure, only a pigmented EC-95 or EC-100 will truly protect from the UV light. (See Product Specification Sheets prior to use)

Recoating
If additional coats are desired, they must be applied with in 24 hours, or the cured material must be sanded and wiped with acetone before application.

Protection of Finished Work
Prohibit traffic on floor for 48 hours after installation. Avoid heavy abrasion and chemical exposure for 5 days. Allow 72 hours minimum for vehicular traffic.

Clean Up
Uncured material can be removed with solvent. If cured, material can only be removed mechanically or with an

MAINTENANCE

Interior floors that are coated with epoxy, or polyurea polyurethane should clean up with a mild non-filming detergent. Be sure to rinse well. You may use Westcoat Degreaser diluted with 10 parts of warm water. Scrub with light bristle brush and rinse with clean water. You may wax interior floors with Westcoat Liquid Floor Wax to renew the gloss if desired. If wax is applied, occasional stripping of the wax may be required.

If recoating of the floor is required due to wear or abrasion, you will need to clean and degrease the surface, then lightly abrade and reapply the topcoat. In most cases you will need to clean the surface with a solvent such as acetone and thin the new topcoat as well. A primer may be required. We suggest you recoat at 5 years depending on use. Contact Westcoat or your applicator for details.
LIMITATIONS

- This system is designed for professional use only.
- Read individual information sheets for each Westcoat product you will be using before beginning the project.
- Be sure to adequate surface preparation.
- Test for moisture in concrete and vapor drive.
- Be sure to do measure and mix properly. Be aware of the pot life of mixed epoxy.
- Do not apply in temperatures below 50°F or above 95°F. Cooler temperatures will cause slower dry times. Westcoat products should never be allowed to FREEZE.
- Thinly applied coatings may not hide epoxy patches, rough concrete or shotblast tracks.
- Heavier topcoat may become slippery.
- For interior use only unless installed with UV resistant coating such as EC-95 or EC-100.
- Solvents may be required in cooler weather to lower viscosity and increase coverage of 100% solids epoxy.
- Please check with local laws governing the use of solvents.
- Hot or cold weather may effect dry times.

HEALTH PRECAUTIONS

Inhalation of vapor or mist can cause headache, nausea, irritation of nose, throat, and lungs. Prolonged or repeated skin contact can cause slight skin irritation. All epoxies have the potential of causing skin irritations or allergic reactions.

Be careful not to get on skin, clothes or in eyes. Glove and respirators are strongly recommended. Avoid breathing vapors. If splashed in the eye, flush with warm water and contact a physician if blurring persists.

DISCLAIMER

PURCHASER’S SOLE AND EXCLUSIVE REMEDY AGAINST THE MANUFACTURER OF WESTCOAT SHALL BE LIMITED SOLELY TO THE REPLACEMENT OF ANY DEFECTIVE MATERIAL OR A PAYMENT BY THE MANUFACTURER IN AN AMOUNT EQUAL TO THE COST OF THE ORIGINAL MATERIAL.

TECHNICAL DATA

<table>
<thead>
<tr>
<th>Test</th>
<th>EC-12 Epoxy Primer</th>
<th>EC-31 Epoxy Clear Topcoat</th>
<th>EC-34 Epoxy Topcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Strength, psi ASTM D695</td>
<td>11,355</td>
<td>10,105</td>
<td>11,100</td>
</tr>
<tr>
<td>Compressive Modulus, psi</td>
<td>375,000</td>
<td>310,000</td>
<td>365,000</td>
</tr>
<tr>
<td>Tensile Strength, psi ASTM D638</td>
<td>7,550</td>
<td>6,850</td>
<td>7,800</td>
</tr>
<tr>
<td>Tensile Modulus, psi</td>
<td>189,000</td>
<td>204,0000</td>
<td>192,000</td>
</tr>
<tr>
<td>Elongation, %</td>
<td>5.3</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Hardness, Shore D ASTM D2240</td>
<td>83</td>
<td>84</td>
<td>83</td>
</tr>
<tr>
<td>Abrasion Resistance, wt loss, gms ASTM D4060 @ 1000 Cycles</td>
<td>0.036</td>
<td>0.056</td>
<td>0.036</td>
</tr>
<tr>
<td>Mar Resistance, KG ASTM D5178</td>
<td>1.3</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>Pencil Hardness</td>
<td>3H</td>
<td>3H</td>
<td>3H</td>
</tr>
<tr>
<td>Impact Resistance, inch-lbs Direct/Reverse ASTM D2194-84</td>
<td>15/2</td>
<td>20/2</td>
<td>15/4</td>
</tr>
<tr>
<td>Flexural Strength, psi ASTM D790</td>
<td>11.185</td>
<td>10.175</td>
<td>11,000</td>
</tr>
<tr>
<td>Flexural Modulus, psi</td>
<td>445,000</td>
<td>383,000</td>
<td>383,000</td>
</tr>
<tr>
<td>Cross Hatch Adhesion 0-Worst, 5-Best</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Glass Transition, °C</td>
<td>48</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>